Live speech recognition in sports games by adaptation of acoustic model and language model
نویسندگان
چکیده
This paper proposes a method to automatically extract keywords from baseball radio speech through LVCSR for highlight scene retrieval. For robust recognition, we employed acoustic and language model adaptation. In acoustic model adaptation, supervised and unsupervised adaptations were carried out using MLLR+MAP. By this two level adaptation, word accuracy was improved by 28%. In language model adaptation, language model fusion and pronunciation modification were carried out. This adaptation showed 13% improvement at word accuracy. Finally, by integrating both adaptations, 38% improvement was achieved at word accuracy level and 28% improvement at keyword accuracy level.
منابع مشابه
Allophone-based acoustic modeling for Persian phoneme recognition
Phoneme recognition is one of the fundamental phases of automatic speech recognition. Coarticulation which refers to the integration of sounds, is one of the important obstacles in phoneme recognition. In other words, each phone is influenced and changed by the characteristics of its neighbor phones, and coarticulation is responsible for most of these changes. The idea of modeling the effects o...
متن کاملSpoken Term Detection for Persian News of Islamic Republic of Iran Broadcasting
Islamic Republic of Iran Broadcasting (IRIB) as one of the biggest broadcasting organizations, produces thousands of hours of media content daily. Accordingly, the IRIBchr('39')s archive is one of the richest archives in Iran containing a huge amount of multimedia data. Monitoring this massive volume of data, and brows and retrieval of this archive is one of the key issues for this broadcasting...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملSpeech recognition of broadcast sports news
This paper shows that a domain-dependent language model and state-skipped HMMs can achieve improvements in word recognition accuracy on a broadcast sports news transcription task. Although a domain-dependent language model is much better than a general model in terms of word error rate, the smaller training corpus for a special topic relative to the general news corpus leads to problems especia...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کامل